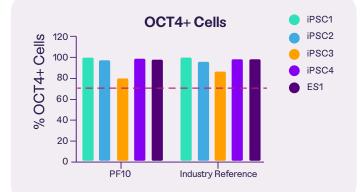
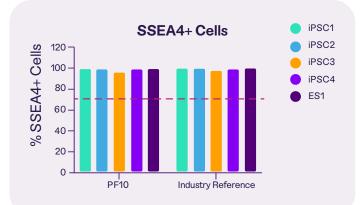
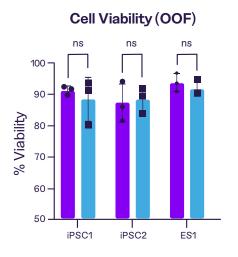

teknova: 🛞 pluristyx

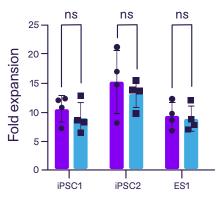

See the data behind the PluriFreeze[™] Cryopreservation System:

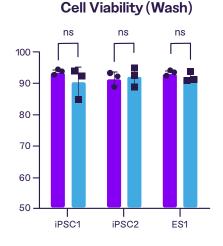


Undifferentiated Status of iPSCs

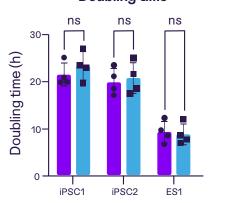
Cryopreservation of iPSCs using **PlurifFeeze PF10** supports similar post-thaw levels of marker expression of undifferentiated state compared to the industry reference with four iPSCs and one embryonic stem (ES) cell line. The 70% threshold shown on the flow cytometry plots is a minimum level for iPSCs that we expect all undifferentiated stem cells to maintain.





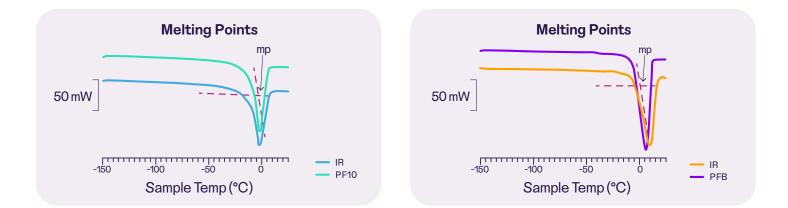

Recovery of iPSCs

Pluripotent stem cell performance when cryopreserved with PluriFreeze and the industry reference results in similar cell viability, recovery, doubling times, and expansion fold post-thaw.



Doubling time

120 100 80 60 40 20 0 iPSC1 iPSC2 ES1


Industry Reference

Plurifreeze 10

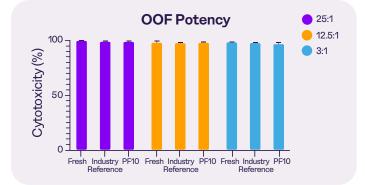
% Viable Cell Recovery

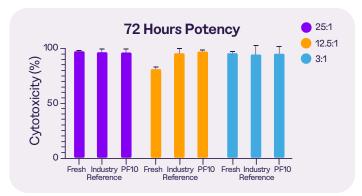
Thermal Characteristics: Melting Point

The charts below show the melting points of PluriFreeze compared to the industry reference (IR), determined by Differential Scanning Calorimetry (DSC). Both products — PluriFreeze Base and PF10 — have similar thermal characteristics, indicating the easy implementation of PluriFreeze in existing protocols.

Thermal Chracteristics: Glass Transition

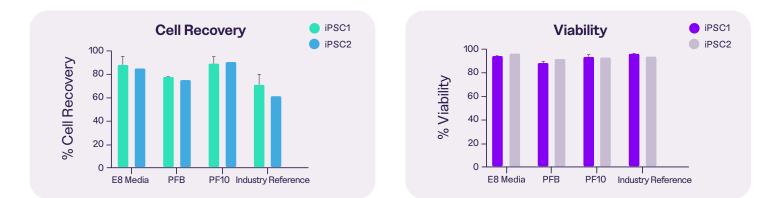
The glass transition temperature (Tg) of PluriFreeze is compared to the industry reference (IR) as determined by Differential Scanning Calorimetry (DSC). Both products – PluriFreeze Base and PF10 – have similar thermal characteristics, indicating the easy implementation of PluriFreeze into existing protocols.

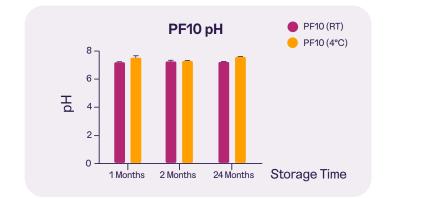



Cell Recovery: NK Cells (KHYG1)

Cryopreservation of nautral killer (NK) cells using PluriFreeze PF10 supports similar levels of surface marker expression post-thaw compared to the industry reference.

Out of Freeze (OOF)	CD3+ Cells	CD16+ Cells	CD56+ Cells
Proliferating	2.3%	0.7%	94.8%
PF10	$0.8 \pm 0.1\%$	$0.4\pm0.1\%$	$97.1 \pm 0.4\%$
Industry Reference	$0.9 \pm 0.1\%$	$0.5\pm0.1\%$	$97.0 \pm 0.3\%$
OOF 72 Hours	CD3+ Cells	CD16+ Cells	CD56+ Cells
Proliferating	1.8%	0.4%	97.5%
Proliferating PF10	1.8% 1.0 ± 0.6%	0.4% 0.5±0.2%	97.5% 98.5 ± 0.4%
5			


Cryopreservation of NK cells using PluriFreeze PF10 resulted in good viable and functional recovery at thaw, persisting for 72 hours.


Cell Stability in Cryomedia Pre-Freeze

Simulated testing of cell stress included cell harvest, centrifugation to remove media, resuspension and 5-minute holds in various media types, centrifugation to remove supernatant, resuspension in culture media, and cell counting.



Stability

PluriFreeze is stable for up to two years at 4°C and at room temperature, with no change in pH or solute precipitation. PluriFreeze is intended to be stored and used at 2-8°C. Excursions in temperature for shipping and storage to room temperature are acceptable.

